4.6 Article

Uncoupling of cell growth and proliferation results in enhancement of productivity in p21C1P1-arrested CHO cells

Journal

BIOTECHNOLOGY AND BIOENGINEERING
Volume 85, Issue 7, Pages 741-749

Publisher

WILEY
DOI: 10.1002/bit.20025

Keywords

cyclin-dependent kinase; cell cycle arrest; growth control; metabolic engineering

Ask authors/readers for more resources

Chinese hamster ovary cells have c been engineered to inducibly over-express the p21(CIP1) cyclin-dependent kinase inhibitor, to achieve cell cycle arrest and increase cell productivity. In p21(CIP1)-arrested cells production of antibody from a stably integrated IgG4 gene, was enhanced approximately fourfold. The underlying physiological basis for enhanced productivity was investigated by measuring a range of cellular and metabolic parameters. Interestingly, the average cell volume of arrested cells was approximately fourfold greater than that of proliferating cells. This was accompanied by significant increases in mitochondrial mass, mitochondrial activity, and ribosomal protein S6 levels. Our results suggest that p21(CIP1)-induced cell cycle arrest uncouples cell growth from cell-cycle progression, and provides new insight into how improved productivity can be achieved in a cell line commonly used for large-scale production of pharmaceutical proteins. (C) 2004 Wiley Periodicals, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available