4.3 Article

Technical aspects of the piezo, laser-assisted, and conventional methods for nuclear transfer of mouse oocytes and their efficiency and efficacy: Piezo minimizes damage of the ooplasmic membrane at injection

Publisher

WILEY
DOI: 10.1002/jez.a.20037

Keywords

-

Categories

Ask authors/readers for more resources

Assessment of the advantages and disadvantages of the piezo, laser, and conventional methods for nuclear transfer has remained elusive. Furthermore, although the piezo method had been used by some investigators for research of sperm injection and nuclear transfer for several years, many researchers have failed to operate the technique smoothly and achieve reproducible results. The procedures of nuclear transfer using piezo were ascertained and described in detail. Mouse oocytes were enucleated, and injected with cumulus cells using the piezo, laser, or conventional methods. We investigated the time needed and survival of nuclear transfer. Development was compared among the three methods and parthenogenetic control specimens. The average time of nuclear transfer for each oocyte was significantly shorter using the piezo (118 +/- 9 s) and laser methods (120 +/- 11 s) than using the conventional method (170 +/- 11 s). The damage rate was smaller for the piezo group (10%) than the laser (37%) and conventional (40%) groups. The percentages of blastocyst formation (14%, 12%, and 11%) and the number of nuclei of blastocysts (54 +/- 13, 51 +/- 11, and 52 +/- 12) were similar among the piezo, laser, and conventional groups, but significantly lower than for the control group (83%, 105 +/- 14). The piezo technique is more efficient than the conventional method for nuclear transfer. The laser method is easy to operate, but the equipment is expensive. In addition, piezo induced fewer traumas while breaking the membrane than the aspiration techniques used in the laser and conventional methods. (C) 2004 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available