4.1 Review

Spectral reflectance-compositional properties of spinels and chromites: Implications for planetary remote sensing and geothermometry

Journal

METEORITICS & PLANETARY SCIENCE
Volume 39, Issue 4, Pages 545-565

Publisher

WILEY
DOI: 10.1111/j.1945-5100.2004.tb00918.x

Keywords

-

Ask authors/readers for more resources

Reflectance spectra of spinels and chromites have been studied as a function of composition. These two groups of minerals are spectrally distinct, which relates largely to differences in the types of major cations present. Both exhibit a number of absorption features in the 0.3-26 mum region that show systematic variations with composition and can be used to quantify or constrain certain compositional parameters, such as cation abundances, and site occupancies. For spinels, the best correlations exist between Fe2+ content and wavelength positions of the 0.46, 0.93, 2.8, Restrahelen, 12.3, 16.2, and 17.5 mum absorption features, At and Fe3+ content with the wavelength position of the 0.93 pm absorption feature, and Cr content from the depth of the absorption band near 0.55 mum. For chromites, the best correlations exist between Cr content and wavelength positions of the, 0.49, 0.59, 2, 17.5, and 23 mum absorption features, Fe2+ and Mg contents with the wavelength position of the 1.3 mum absorption feature, and Al content with the wavelength position of the 2 mum absorption feature. At shorter wavelengths, spinels and chromites are most readily distinguished by the wavelength position of the absorption band in the 2 mum region (<2.1 mum for spinels, >2.1 mum for chromite), while at longer wavelengths, spectral differences are more pronounced. The importance of being able to derive compositional information for spinels and chromites from spectral analysis stems from the relationship between composition and petrogenetic conditions (pressure, temperature, oxygen fugacity) and the widespread presence of spinels and chromites in the inner solar system. When coupled with the ability to derive compositional information for mafic silicates from spectral analysis, this opens up the possibility of deriving petrogenetic information for remote spinel- and chromite-bearing targets from analysis of their reflectance spectra.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.1
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available