4.7 Article

Nitric oxide plays a central role in determining lateral root development in tomato

Journal

PLANTA
Volume 218, Issue 6, Pages 900-905

Publisher

SPRINGER
DOI: 10.1007/s00425-003-1172-7

Keywords

nitric oxide; auxin; Lycopersicon; lateral root; primary root

Categories

Ask authors/readers for more resources

Nitric oxide (NO) is a bioactive molecule that functions in numerous physiological processes in plants, most of them involving cross-talk with traditional phytohormones. Auxin is the main hormone that regulates root system architecture. In this communication we report that NO promotes lateral root (LR) development, an auxin-dependent process. Application of the NO donor sodium nitroprusside (SNP) to tomato (Lycopersicon esculentum Mill.) seedlings induced LR emergence and elongation in a dose-dependent manner, while primary root (PR) growth was diminished. The effect is specific for NO since the NO scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (CPTIO) blocked the action of SNP. Depletion of endogenous NO with CPTIO resulted in the complete abolition of LR emergence and a 40% increase in PR length, confirming a physiological role for NO in the regulation of root system growth and development. Detection of endogenous NO by the specific probe 4,5-diaminofluorescein diacetate (DAF-2 DA) revealed that the NO signal was specifically located in LR primordia during all stages of their development. In another set of experiments, SNP was able to promote LR development in auxin-depleted seedlings treated with the auxin transport inhibitor N-1-naphthylphthalamic acid (NPA). Moreover, it was found that LR formation induced by the synthetic auxin 1-naphthylacetic acid (NAA) was prevented by CPTIO in a dose-dependent manner. All together, these results suggest a novel role for NO in the regulation of LR development, probably operating in the auxin signaling transduction pathway.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available