4.5 Article

Lipopolysaccharide induces type 2 iodothyronine deiodinase in the mediobasal hypothalamus: Implications for the nonthyroidal illness syndrome

Journal

ENDOCRINOLOGY
Volume 145, Issue 4, Pages 1649-1655

Publisher

ENDOCRINE SOC
DOI: 10.1210/en.2003-1439

Keywords

-

Funding

  1. NIDDK NIH HHS [DK36256, DK37021] Funding Source: Medline

Ask authors/readers for more resources

To determine whether the type 2 iodothyronine deiodinase (D2), the principal central nervous system enzyme converting T-4 to biologically active T-3, is regulated in tanycytes by immune activation, D2 activity was measured in the mediobasal hypothalamus (MBH) 4, 12, and 24 h after administration of bacterial lipopolysaccharide (LPS) and compared with D2 levels in the cortex and anterior pituitary of rats. In contrast to D2 activity in the cortex and anterior pituitary that showed a steady linear increase over 24 h, which was coincident with a decline in thyroid hormone and TSH levels, D2 activity peaked in the MBH 12 h after LPS administration. By in situ hybridization, the increased D2 mRNA synthesis induced by LPS was specifically localized to tanycytes lining the third ventricle. In vitro assays in HC11 and HEK-293 cells demonstrated that the p65 subunit of nuclear factor-kappaB markedly increased both rat and human D2 genes (dio2) as analyzed by promoter assays. No activation of human dio2 was observed when an 83-bp minimal promoter was used. We propose that LPS or LPS-induced cytokines directly induce D2 mRNA in tanycytes. The ensuing MBH-specific D2-mediated local thyrotoxicosis may suppress the hypothalamus-pituitary-thyroid axis by local feedback inhibition of hypophysiotropic TRH and/or TSH and contribute to the mechanism of central hypothyroidism associated with infection.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available