4.8 Article

Reversible site-selective labeling of membrane proteins in live cells

Journal

NATURE BIOTECHNOLOGY
Volume 22, Issue 4, Pages 440-444

Publisher

NATURE PUBLISHING GROUP
DOI: 10.1038/nbt954

Keywords

-

Ask authors/readers for more resources

Chemical and biological labeling is fundamental for the elucidation of the function of proteins within biochemical cellular networks. In particular, fluorescent probes allow detection of molecular interactions, mobility and conformational changes of proteins in live cells with high temporal and spatial resolution(1-3). We present a generic method to label proteins in vivo selectively, rapidly (seconds) and reversibly, with small molecular probes that can have a wide variety of properties. These probes comprise a chromophore and a metal-ion-chelating nitrilotriacetate (NTA) moiety, which binds reversibly and specifically to engineered oligohistidine sequences in proteins of interest(4). We demonstrate the feasibility of the approach by binding NTA-chromophore conjugates(5) to a representative ligand-gated ion channel and G protein-coupled receptor, each containing a polyhistidine sequence. We investigated the ionotropic 5HT(3) serotonin receptor by fluorescence measurements to characterize in vivo the probe-receptor interactions, yielding information on structure and plasma membrane distribution of the receptor.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available