4.6 Article

Abundance constraints and direct redshift measurement of the diffuse X-ray emission from a distant cluster of galaxies

Journal

ASTRONOMY & ASTROPHYSICS
Volume 417, Issue 3, Pages 819-825

Publisher

EDP SCIENCES S A
DOI: 10.1051/0004-6361:20034229

Keywords

X-rays : galaxies : clusters; cosmology : cosmological parameters; galaxies : high-redshift

Ask authors/readers for more resources

We report on the XMM-Newton (XMM) observation of RX J1053.7+5735, one of the most distant X-ray selected clusters of galaxies, which also shows an unusual double-lobed X-ray morphology, indicative of a possible equal-mass cluster merger. The cluster was discovered during the ROSAT deep pointings in the direction of the Lockman Hole. All XMM Lockman Hole observations (PV, AO-1 & AO-2 phases) with the European Photon Imaging Camera (EPIC) were combined for the analysis, totaling exposure times similar to648 ks, 738 ks, and 758 ks for pn, MOS1, and MOS2, respectively. With this deep dataset, we could detect the Fe K line and obtain a strong constraint on cluster metallicity, which is difficult to achieve for clusters at z>1. The best-fit abundance is 0.46(-0.07)(+0.11) times the solar value. The Fe line emission also allows us to directly estimate the redshift of diffuse gas, with a value z=1.14(-0.01)(+0.01). This is one of the first clusters whose X-ray redshift is directly measured prior to the secure knowledge of cluster redshift by optical/NIR spectroscopy. We could also estimate the X-ray redshift separately for each of the two lobes in the double-lobed structure, and the result is consistent with the two lobes being part of one cluster system at the same redshift. Comparison with other metallicity measurements of nearby and distant clusters shows that there is little evolution in the ICM metallicity from zsimilar to1 to the present.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available