4.6 Article

Redistributing populations of Rydberg atoms with half-cycle pulses

Journal

PHYSICAL REVIEW A
Volume 69, Issue 4, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevA.69.041402

Keywords

-

Ask authors/readers for more resources

Expanding the wave function in terms of eigenstates, we calculated the population redistribution of high-Rydberg hydrogen atoms under the interactions of external time-dependent electromagnetic fields. Our numerical results show that populations of Rydberg atoms can be driven down to lower n levels with a train of half-cycle pulses. Oscillations of the Rydberg population through both n levels and l levels are observed during these interactions. The approach may have applications in providing an effective mechanism for producing near ground-state atoms from the initially high-Rydberg distributions found in recombining ultracold plasmas such as encountered in the antihydrogen trapping experiments at CERN.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available