4.7 Article

Crystal structure of phosphotransacetylase from the methanogenic archaeon Methanosarcina thermophila

Journal

STRUCTURE
Volume 12, Issue 4, Pages 559-567

Publisher

CELL PRESS
DOI: 10.1016/j.str.2004.03.007

Keywords

-

Funding

  1. NIDDK NIH HHS [DK54835] Funding Source: Medline
  2. NIGMS NIH HHS [GM44661] Funding Source: Medline

Ask authors/readers for more resources

Phosphotransacetylase (Pta) [EC 2.3.1.8] is ubiquitous in the carbon assimilation and energy-yielding pathways in anaerobic prokaryotes where it catalyzes the reversible transfer of the acetyl group from acetyl phosphate to CoA forming acetyl CoA and inorganic phosphate. The crystal structure of Pta from the methane-producing archaeon Methanosarcina thermophila, representing the first crystal structure of any Pta, was determined by multiwavelength anomalous diffraction at 2.7 Angstrom resolution. In solution and in the crystal, the enzyme forms a homodimer. Each monomer consists of two alpha/beta domains with a cleft along the domain boundary, which presumably contains the substrate binding sites. Comparison of the four monomers present in the asymmetric unit indicates substantial variations in the relative orientation of the two domains and the structure of the putative active site cleft. A search for structural homologs revealed the NADP(+)-dependent isocitrate and isopropylmalate dehydrogenases as the only homologs with a similar two-domain architecture.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available