4.7 Article

Engineering of tooth-supporting structures by delivery of PDGF gene therapy vectors

Journal

MOLECULAR THERAPY
Volume 9, Issue 4, Pages 519-526

Publisher

CELL PRESS
DOI: 10.1016/j.ymthe.2004.01.016

Keywords

gene therapy; platelet-derived growth factor; tissue engineering; periodontal disease; biomimetics; wound repair

Funding

  1. NCI NIH HHS [R24CA83099, R24 CA083099-04, R24 CA083099] Funding Source: Medline
  2. NIDCR NIH HHS [R01 DE013397, DE 13397, R29 DE011960-04, R01 DE013397-04, DE 11960] Funding Source: Medline

Ask authors/readers for more resources

Platelet-derived growth factor (PDGF) exerts potent effects on wound healing including the regeneration of tooth-supporting structures. Limitations of topical protein delivery to periodontal osseous defects include transient biological activity and the bioavailability of PDGF at the wound site. The objective of this investigation was to determine the feasibility of in vivo PDGF-B gene transfer to stimulate periodontal tissue regeneration in large tooth-associated alveolar bone defects in rats. Periodontal lesions (0.3 x 0.2 cm in size) were treated with a 2.6% collagen matrix alone or a matrix containing adenoviruses encoding luciferase (control), a dominant negative mutant of PDGF-A (PDGF-1308), or PDGF-B. Block biopsies were harvested at 3, 7, and 14 days post-gene delivery and descriptive histology and histomorphometric analyses were performed. The defects treated with Ad-PDGF-B demonstrated greater proliferating cell nuclear antigen positively stained cells and strong evidence of bone and cementum regeneration beyond that of Ad-luciferase and Ad-PDGF-1308 groups. Quantitative image analysis showed a nearly fourfold increase in bridging bone and sixfold increase in tooth-lining cemental repair in the Ad-PDGF-B-treated sites compared to lesions treated with Ad-luciferase or collagen matrix alone, which showed limited hard tissue neogenesis. In addition, the Xenogen In Vivo Imaging System revealed sustained and localized gene expression of the luciferase reporter at the periodontal lesions for up to 21 days after gene transfer. These results indicate that in vivo direct gene transfer of PDGF-B stimulates alveolar bone and cementum regeneration in large periodontal defects. Gene therapy utilizing PDGF-B may offer the potential for periodontal tissue engineering applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available