4.2 Article

IFN-β induces caspase-mediated apoptosis by disrupting mitochondria in human advanced stage colon cancer cell lines

Journal

JOURNAL OF INTERFERON AND CYTOKINE RESEARCH
Volume 24, Issue 4, Pages 231-243

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/107999004323034105

Keywords

-

Ask authors/readers for more resources

Various human colon cancer cell lines tested in vitro differed significantly in susceptibility to growth inhibition of recombinant human interferon-beta (rHuIFN-beta). Two p53-mutant lines, COH and CC-M2, derived from high-grade colon adenocarcinoma, showed signs of apoptosis after treatment with 250 IU/ml of HuIFN-beta in the culture medium. The similarly p53-mutated HT-29 line from a grade I adenocarcinoma showed no apoptosis, however, and only cell cycle G(1)/G(0) or S phase retardation with 1000 IU/ml HuIFN-beta. After HuIFN-beta exposure, COH and CC-M2 cells showed increased levels of Fas and FasL proteins, alteration of mitochondrial membrane potential, and activation of caspase-9, caspase-8, and caspase-3 in a time-dependent manner. Treatment of COH and CC-M2 cells with anti-FasL antibodies or rFas/Fc fusion protein, however, could not prevent the apoptosis induced by HuIFN-beta. In contrast, cell-permeable specific inhibitors of the three caspases could inhibit the DNA fragmentation and cell death but not the mitochondrial membrane potential changes. Treatment with mitochondria-stabilizing reagents could significantly abrogate the apoptosis and caspase activation induced by HuIFN-beta. These results suggest that in COH and CC-M2 colon cancer cell lines, HuIFN-beta induces apoptosis mainly through mitochondrial membrane alteration and subsequent activation of the caspase cascade pathway, but not by the Fas/FasL interaction or the p53-dependent apoptotic mechanism.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available