4.5 Article

ΔFosB induces osteosclerosis and decreases adipogenesis by two independent cell-autonomous mechanisms

Journal

MOLECULAR AND CELLULAR BIOLOGY
Volume 24, Issue 7, Pages 2820-2830

Publisher

AMER SOC MICROBIOLOGY
DOI: 10.1128/MCB.24.7.2820-2830.2004

Keywords

-

Funding

  1. NIAMS NIH HHS [P30 AR046032, R01 AR048218, AR48218, AR46032] Funding Source: Medline
  2. NIDCR NIH HHS [DE12616, R01 DE012616] Funding Source: Medline

Ask authors/readers for more resources

Osteoblasts and adipocytes may develop from common bone marrow mesenchymal precursors. Transgenic mice overexpressing DeltaFosB, an AP-1 transcription factor, under the control of the neuron-specific enolase (NSE) promoter show both markedly increased bone formation and decreased adipogenesis. To determine whether the two phenotypes were linked, we targeted overexpression of DeltaFosB in mice to the osteoblast by using the osteocalcin (OG2) promoter. OG2-DeltaFosB mice demonstrated increased osteoblast numbers and an osteosclerotic phenotype but normal adipocyte differentiation. This result firmly establishes that the skeletal phenotype is cell autonomous to the osteoblast lineage and independent of adipocyte formation. It also strongly suggests that the decreased fat phenotype of NSE-DeltaFosB mice is independent of the changes in the osteoblast lineage. In vitro, overexpression of DeltaFosB in the preadipocytic 3T3-L1 cell line had little effect on adipocyte differentiation, whereas it prevented the induction of adipogenic transcription factors in the multipotential stromal cell line ST2. Also, DeltaFosB isoforms bound to and altered the DNA-binding capacity of C/EBPbeta. Thus, the inhibitory effect of DeltaFosB on adipocyte differentiation appears to occur at early stages of stem cell commitment, affecting C/EBPbeta functions. It is concluded that the changes in osteoblast and adipocyte differentiation in DeltaFosB transgenic mice result from independent cell-autonomous mechanisms.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available