4.3 Review

Zoonotic poxvirus infections in humans

Journal

CURRENT OPINION IN INFECTIOUS DISEASES
Volume 17, Issue 2, Pages 81-89

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1097/00001432-200404000-00003

Keywords

-

Ask authors/readers for more resources

Purpose of review The 2003 USA monkeypox epidemic caused by imported African rodents, newly emergent poxvirus zoonoses in Brazil and the possible use of variola virus for biological warfare has led to renewed interest in poxviruses and anti-poxviral therapies. Increasing foreign travel and importation of exotic animal species increases the likelihood of poxvirus infections occurring outside their usual geographical range and diagnostic delay has important implications. The present review provides an overview of these rare zoonoses. Recent findings Three genera of Poxviridae are known to cause human zoonoses: orthopoxviruses, parapoxviruses and yatapoxvirus. Most cases are occupational, sporadic and have few cutaneous lesions with low morbidity. The exception is monkeypox, similar to smallpox, with significant morbidity and childhood mortality. Molecular characterization using polymerase chain reaction (PCR) amplification and other methods provides accurate phylogenetic identification and suggests that a cowpox-like virus is the probable ancestor of variola and other zoonotic poxviruses. DNA genomic sequencing of the Brazilian Cantagalo and Aracatuba viruses shows a close relationship to vaccinia virus. Poxviruses have potential in cancer immunotherapy and their ability to evade host-cell immune responses may provide a basis for new antipoxvirus therapies. Other agents, particularly nucleoside phosphonates such as cidofovir, show therapeutic action against poxviruses. Summary Human zoonotic poxvirus infections are rare but increasingly encountered outside their usual geographical range. The 2003 USA monkeypox outbreak emphasizes the importance of early accurate diagnosis, particularly because increasing numbers of immunosuppressed individuals increases the potential for severe or fatal infections. Pi methodology enables accurate phylogenetic typing and has identified new diseases, but rapid, reliable methods must be made available for clinicians. More research into therapeutic agents for the prevention and treatment of poxvirus infections is required.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available