4.5 Article

Lentivirus vector-mediated expression of tumor-associated epitopes by human antigen presenting cells

Journal

HUMAN GENE THERAPY
Volume 15, Issue 4, Pages 393-404

Publisher

MARY ANN LIEBERT, INC
DOI: 10.1089/104303404322959542

Keywords

-

Ask authors/readers for more resources

Directing the human immune system to recognize and eliminate tumor cells is the ultimate goal of cancer immunotherapy. Vaccinating patients with autologous antigen presenting cells (APC) expressing tumor-associated antigens (TAA) represents a promising approach for activating tumor-reactive T cells in vivo. In addition, APC expressing TAA provide a means of generating tumor-specific T cells in vitro, for therapeutic and diagnostic applications. Lentiviral vectors are attractive vehicles for introducing TAA-encoding genes into APC. In this study, lentiviral vectors expressing the reporter gene GFP or the melanoma-associated antigen tyrosinase were used to transduce three different kinds of human APC: monocyte-derived dendritic cells ( DC), CD40L-activated B lymphocytes, and Epstein Barr virus (EBV)-transformed B lymphocytes. Using optimized transduction conditions for each cell type, tyrosinase was expressed at levels sufficient to stimulate antigen-specific major histocompatibility complex (MHC) class I-restricted T cells from melanoma patients. While transduced EBV-B cells demonstrated the highest level of transgene expression, optimal T-cell recognition was achieved with transduced DC. Substituting the CAG promoter for PGK in lentiviral constructs enhanced transgene expression in DC and EBV-B cells, amplifying T cell recognition. Lentiviruses inducing sustained transgene expression with relatively low cellular toxicity and background viral gene expression may be ideal vectors for immunotherapeutic applications.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available