4.3 Article

The possible roles of the DNA helicase and C-terminal domains in RECQ5/QE: complementation study in yeast

Journal

DNA REPAIR
Volume 3, Issue 4, Pages 369-378

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.dnarep.2003.12.001

Keywords

RecQ5; Drosophila; yeast; helicase; sgs1; srs2; top3

Ask authors/readers for more resources

DmRECQ5/QE is a member of the RECQ5 subfamily, which shares homology with the Escherichia coli RecQ DNA helicase. Although the DNA helicase activity of RECQ5/QE has been characterized in vitro, the in vivo function of RECQ5/QE was essentially unknown. To investigate the cellular role of RECQ5, the potential of RECQ5/QE was evaluated by substitution of the only RecQ-like helicase, Sgs1, in budding yeast. RECQ5/QE can complement several phenotypes of sgs1, including the synthetic growth defect with srs2, the hypersensitivity to hydroxyurea and methyl methanesulfonate, and the elevated frequency of homologous recombination and sister chromatid exchange (SCE), but poorly complemented the suppression of slow growth in top3. These data suggested that RECQ5/QE exhibits an evolutionarily conserved RecQ function in vivo. The RECQ5/QE domain necessary for the yeast complementation was determined. The helicase domain and helicase activity were required to complement both the sgs1srs2 and sgs1top3 phenotypes. In contrast, the C-terminal domain was dispensable for complementing the sgs1srs2 phenotype, but was required for the sgs1top3 phenotype. These results suggested that the RECQ5/QE helicase activity is important for cellular function and that the C-terminal domain has a specific function in the absence of Top3. (C) 2003 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available