4.6 Article

Effects of interleukin-1β and prostaglandin E2 on prostaglandin D synthase production in cultivated rat leptomeningeal cells

Journal

JOURNAL OF CEREBRAL BLOOD FLOW AND METABOLISM
Volume 24, Issue 4, Pages 409-418

Publisher

SAGE PUBLICATIONS INC
DOI: 10.1097/00004647-200404000-00006

Keywords

prostaglandin; proinflammatory cytokine; blood-CSF barrier; tight junction; NF-kappa B; zonula occludentes

Ask authors/readers for more resources

Although the interleukin (IL)-1 receptor is densely distributed in the leptomeninges constituting the blood/cerebrospinal fluid barrier, its physiologic significance has remained unclear. In the present study, we show that in cultured leptomeningeal cells, IL-1beta, tumor necrosis factors, or lipopolysaccharide causes a prominent increase in the synthesis and release of prostaglandin (PG) D synthase, which catalyzes the final step in the biosynthesis of PGD(2). Although significant increases in the amount of PGD synthase were also observed with cells exposed to somatostatin, thrombin, or ciliary neurotrophic factor, these were much smaller than were those induced by the proinflammatory cytokines. Other agents tested including IGF-I had no effect upon the enzyme levels in the culture media. Furthermore, we found that the increased secretion of PGD synthase by IL-1beta was completely inhibited by 10(-7) NI PGE(2),. The same dose of PGD, or 15-deoxy-Delta(12-14)PGJ(2), had no effect upon the IL-1beta action. In addition, PGE(2) increased the level of fibronectin and eliminated the expression of zonula occludentes-1, a tight junction-associated protein from cultured cells, effects likely reflecting a loss of barrier integrity. These results demonstrate the importance of inflammatory stimuli as a physiologic regulator of the leptomeningeal cell function.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available