4.7 Article

Multimodal assessment of cortical activation during apple peeling by NIRS and fMRI

Journal

NEUROIMAGE
Volume 21, Issue 4, Pages 1275-1288

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.neuroimage.2003.12.003

Keywords

near-infrared spectroscopy; NIRS; prefrontal cortex; simultaneous measurement; fMRI; apple peeling; everyday tasks

Ask authors/readers for more resources

An intriguing application of neuroimaging is directly measuring actual human brain activities during daily living. To this end, we investigated cortical activation patterns during apple peeling. We first conducted a pilot study to assess the activation pattern of the whole lateral cortical surface during apple peeling by multichannel near-infrared spectroscopy (NIRS) and detected substantial activation in the prefrontal region in addition to expected activations extending over the motor, premotor and supplementary motor areas. We next examined cortical activation during mock apple peeling by simultaneous measurement using multichannel NIRS and functional magnetic resonance imaging (fMRI) in four subjects. We detected activations extending over the motor, premotor and supplementary motor areas, but not in the prefrontal cortex. Thus, we finally focused on the prefrontal cortex and examined its activation during apple peeling in 12 subjects using a multichannel NIRS. We subsequently found that regional concentrations of oxygenated hemoglobin significantly increased in the measured region, which encompassed portions of the dorsolateral, ventrolateral and frontopolar areas of the prefrontal cortex. The current study demonstrated that apple peeling as practiced in daily life recruited the prefrontal cortex but that such activation might not be detected for less laborious mock apple peeling that can be performed in an fMRI environment. We suggest the importance of cortical study of an everyday task as it is but not as a simplified form; we also suggest the validity of NIRS for this purpose. Studies on everyday tasks may serve as stepping stone toward understanding human activities in terms of cortical activations. (C) 2004 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available