4.2 Article

Physiological and molecular basis for ALS inhibitor resistance in Bromus tectorum biotypes

Journal

WEED RESEARCH
Volume 44, Issue 2, Pages 71-77

Publisher

WILEY
DOI: 10.1111/j.1365-3180.2003.00374.x

Keywords

Bromus tectorum; ALS inhibitor; acetolactate synthase; herbicide resistance; cross-resistance; als gene; point mutation

Ask authors/readers for more resources

Primisulfuron-resistant (AR and MR) and -susceptible (AS and MS) Bromus tectorum biotypes were collected from a Poa pratensis field at Athena, Oregon, and in research plots at Madras, Oregon. Studies were conducted to characterize the resistance of the B. tectorum biotypes. Whole plant bioassay and acetolactate synthase (ALS) enzyme assay revealed that the AR biotype was highly resistant to the sulfonylurea (SU) herbicides, primisulfuron and sulfosulfuron and to a sulfonylaminocarbonyltriazolinone (SCT) herbicide, propoxycarbazone-sodium. However, the AR biotype was not resistant to imazamox, an imidazolinone (IMI) herbicide. Results of the whole plant bioassay studies showed that the MR biotype was moderately resistant to all ALS inhibitors tested. However, there were no differences in ALS sensitivities between the MR and MS biotypes. The nucleotide and amino acid sequence analysis of the als gene demonstrated a single-point mutation from C to T, conferring the exchange of the amino acid proline to serine at position 197 in the AR biotype. However, this mutation was not found in the MR biotype. Results of this research indicate that: the resistance of the AR biotype to SU and SCT herbicides is based on an altered target site due to a single-point mutation; resistance in the MR biotype is not due to a target site mutation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available