4.7 Article

Exergy-based performance analysis of packed-bed solar air heaters

Journal

INTERNATIONAL JOURNAL OF ENERGY RESEARCH
Volume 28, Issue 5, Pages 423-432

Publisher

WILEY
DOI: 10.1002/er.974

Keywords

solar air heater; packed-bed matrix; energy and exergy efficiency

Ask authors/readers for more resources

This paper presents an experimental investigation of the thermal performance of a solar air heater having its flow channel packed with Raschig rings. The packing improves the heat transfer from the plate to the air flow underneath. The dimensions of the heater are 0.9 m wide and 1.9 m long. The aluminium-based absorber plate was coated with ordinary black paint. The characteristic diameter of the Raschig rings, made of black polyvinyl chloride (PVC) tube, is 50 mm and the depth of the packed-bed in flow channel is 60 mm. Energy and exergy analyses were applied for evaluating the efficiency of the packed-bed solar air heater. The rate of heat recovered from the packed-bed solar air heater varied between 9.3 and 151.5 W m(-2), while the rate 2 of thermal exergy recovered from the packed-bed solar air heater varied between 0.04 and 8.77 W m(-2) during the charging period. The net energy efficiency varied from 2.05 to 33.78%, whereas the net exergy efficiency ranged from 0.01 to 2.16%. It was found that the average daily net energy and exergy efficiencies were 17.51 and 0.91%, respectively. The energy and exergy efficiencies of the packed-bed solar air heater increased as the outlet temperature of heat transfer fluid increased. Copyright (C) 2004 John Wiley Sons, Ltd.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available