4.7 Article

Regulation of transcription of meiotic cell cycle and terminal differentiation genes by the testis-specific Zn-finger protein matotopetli

Journal

DEVELOPMENT
Volume 131, Issue 8, Pages 1691-1702

Publisher

COMPANY BIOLOGISTS LTD
DOI: 10.1242/dev.01032

Keywords

spermatogenesis; transcription; chromatin; meiosis; differentiation

Funding

  1. NICHD NIH HHS [1R01 1HD32936] Funding Source: Medline

Ask authors/readers for more resources

A robust developmentally regulated and cell type specific transcriptional programme is activated in primary spermatocytes in preparation for differentiation of the male gametes during spermatogenesis. Work in Drosophila is beginning to reveal the genetic networks that regulate this gene expression. The Drosophila aly-class meiotic arrest loci are essential for activation of transcription of many differentiation-specific genes, as well as several genes important for meiotic cell cycle progression, thus linking meiotic cell cycle progression to cellular differentiation during spermatogenesis. The three previously described aly-class proteins (aly, comr and achi/vis) form a complex and are associated with chromatin in primary spermatocytes. We identify, clone and characterize a new aly-class meiotic arrest gene, matotopetli (topi), which encodes a testis-specific Zn-finger protein that physically interacts with Comr. The topi mutant phenotype is most like achi/vis in that topi function is not required for the nuclear localization of Aly or Comr, but is required for their accumulation on chromatin. Most target genes in the transcriptional programme depend on both topi and achi/vis; however, a small subset of target genes are differentially sensitive to loss of topi or achi/vis, suggesting that these aly-class predicted DNA binding proteins can act independently in some contexts.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available