4.7 Article

Stimulatory effect of naturally occurring flavonols quercetin and kaempferol on alkaline phosphatase activity in MG-63 human osteoblasts through ERK and estrogen receptor pathway

Journal

BIOCHEMICAL PHARMACOLOGY
Volume 67, Issue 7, Pages 1307-1313

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.bcp.2003.11.009

Keywords

osteoblasts; alkaline phosphatase; ERK; flavonols; estrogen receptors

Ask authors/readers for more resources

Many plant-derived substances have estrogenic activities. Due to their ability to bind the estrogen receptor (ER), these compounds have the potential to counteract the deleterious effects of estrogen deficiency on bone. In this study, we investigated the in vitro effect of two widespread flavonols, quercetin and kaempferol, on alkaline phosphatase (ALP) activity in MG-63 cultured human osteoblasts. We found that both flavonols significantly increased ALP activity. This effect was markedly reduced by PD 98059, an inhibitor of the extracellular regulated kinase (ERK) pathway, and by ICI 182780, an antagonist of ERs. Western blot studies confirmed that ERK is rapidly activated in cells treated by both flavonols. Finally, ICI 182780 markedly inhibits the flavonol-induced ERK activation. The data presented in this study support the conclusion that, in MG-63 osteoblasts (i) the increase in ALP activity by flavonols involves a rapid stimulation of ERK activation but also involves the ER, and that (ii) the activation of ERK by flavonols occurs most likely downstream of the ERs activation. Taken together, these results suggest that flavonols derivatives as quercetin and kaempferol can stimulate osteoblastic activity. Such compounds may represent new pharmacological tools for the treatment of osteoporosis. (C) 2004 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available