4.5 Article

Cardiac SSFP imaging at 3 tesla

Journal

MAGNETIC RESONANCE IN MEDICINE
Volume 51, Issue 4, Pages 799-806

Publisher

WILEY
DOI: 10.1002/mrm.20024

Keywords

3 Tesla; steady-state free precession (SSFP); localized shimming; higher-order shimming; localized frequency determination; SENSE

Ask authors/readers for more resources

Balanced steady-state free precession (SSFP) techniques provide excellent contrast between myocardium and blood at a high signal-to-noise ratio (SNR). Hence, SSFP imaging has become the method of choice for assessing cardiac function at 1.5T. The expected improvement in SNR at higher field strength prompted us to implement SSFP at 3.0T. In this work, an optimized sequence protocol for cardiac SSFP imaging at 3.0T is derived, taking into account several partly adverse effects at higher field, such as increased field in homogeneities, longer T-1, and power deposition limitations. SSFP contrast is established by optimizing the maximum amplitude of the radiofrequency (RF) field strength for shortest TR, as well as by localized linear or second-order shimming and local optimization of the resonance frequency. Given the increased SNR, sensitivity encoding (SENSE) can be employed to shorten breath-hold times. Short-axis, long-axis, and four-chamber cine views obtained in healthy adult subjects are presented, and three different types of artifacts are discussed along with potential methods for reducing them. (C) 2004 Wiley-Liss, Inc.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available