4.4 Article Proceedings Paper

Hyperinsulinism/hyperammonemia syndrome: insights into the regulatory role of glutamate dehydrogenase in ammonia metabolism

Journal

MOLECULAR GENETICS AND METABOLISM
Volume 81, Issue -, Pages S45-S51

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.ymgme.2003.10.013

Keywords

hypoglycemia; nesidioblastosis; ammonia toxicity; leucine-sensitive hypoglycemia; diazoxide; glutamate dehydrogenase

Ask authors/readers for more resources

The second most common form of congenital hyperinsulinism, the hyperinsulinism/hyperammonemia syndrome (HI/HA), is associated with dominantly expressed missense mutations of the mitochondrial matrix enzyme, glutamate dehydrogenase (GDH). GDH catalyzes the oxidative deamination of glutamate to alpha-ketoglutarate plus ammonia, using NAD or NADP as co-factor. HI/HA mutations impair GDH sensitivity to its allosteric inhibitor, GTP, resulting in a gain of enzyme function and increased sensitivity to its allosteric activator, leucine. The phenotype is dominated by hypoglycemia with post-prandial hypoglycemia following protein meals, as well as fasting hypoglycemia. Plasma ammonia levels are increased 3-5 times normal due to expression of mutant GDH in liver, probably reflecting increased ammonia release from glutamate as well as impaired synthesis of NAG, due to reduction of hepatic glutamate pools. Ammonia levels are unaffected by feeding or fasting and appear to cause no symptoms, perhaps due to a protective effect of increased GDH activity in brain. The clinical consequences of the HI/HA mutations imply that GDH plays a central role in overall control of amino acid catabolism and ammonia metabolism integrating responses to changes in intracellular energy potential and amino acid levels. (C) 2004 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available