4.6 Article

Long-term molecular and cellular stability of human neural stem cell lines

Journal

EXPERIMENTAL CELL RESEARCH
Volume 294, Issue 2, Pages 559-570

Publisher

ELSEVIER INC
DOI: 10.1016/j.yexcr.2003.11.025

Keywords

human neural stem cells; telomere; telomerase; senescence; immortal

Ask authors/readers for more resources

Human Neural Stem Cells (hNSCs) are excellent candidates for in vitro and in vivo molecular, cellular, and developmental research, and also for ex-vivo gene transfer and cell therapy in the nervous system. However, hNSCs are mortal somatic cells, and thus invariably enter an irreversible growth arrest after a finite number of cell divisions in Culture. It has been proposed that this is due to telomere shortening. Here, we show that long-term cultured (up to 4 years) v-myc perpetuated hNSC lines do preserve short but stable and homogeneous telomeres (TRF and Q-FISH determinations). hNSC lines (but not strains) express high levels of telomerase activity, which is activated by v-myc, as demonstrated here. Telomerase activity is not constitutive, becoming non-detectable after differentiation (in parallel to v-myc down-regulation). hNSC lines also maintain a stable cell cycle length, mitotic potential, differentiation and neuron generation capacity, and do not express senescence-associated beta-galactosidase over years, as studied here. These data, collectively, help to explain the immortal nature of v-myc-perpetuated hNSC lines, and to establish them as excellent research tools for basic and applied neurobiological and translational studies. (C) 2004 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available