4.8 Article

Saccharomyces cerevisiae MER3 helicase stimulates 3′-5′ Heteroduplex extension by Rad51:: Implications for crossover control in meiotic recombination

Journal

CELL
Volume 117, Issue 1, Pages 47-56

Publisher

CELL PRESS
DOI: 10.1016/S0092-8674(04)00294-6

Keywords

-

Funding

  1. NIGMS NIH HHS [GM26017, GM62653] Funding Source: Medline

Ask authors/readers for more resources

Crossover and noncrossover recombinants can form by two different pathways during meiotic recombination in Saccharomyces cerevisiae. The MER3 gene is known to affect selectively crossover, but not noncrossover, recombination. The Mer3 protein is a DNA helicase that unwinds duplex DNA in the 3' to 5' direction. To define the underlying molecular steps of meiotic recombination, we investigated the role of Mer3 helicase in DNA strand exchange promoted by Rad51 protein. We found that Mer3 helicase does not function as an initiator of DNA pairing events but, rather, it stimulates DNA heteroduplex extension in the 3' --> 5' direction relative to the incoming (or displaced) single-stranded DNA. Conversely, Mer3 helicase blocks DNA heteroduplex extension in the 5' --> 3' direction. Our results support the idea that Mer3 helicase stabilizes nascent joint molecules via DNA heteroduplex extension to permit capture of the second processed end of a double-stranded DNA break, a step which is required for crossover recombinant product formation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available