4.5 Article

Synthesis and properties of Zn-Al layered double hydroxides containing ferrocenecarboxylate anions

Journal

EUROPEAN JOURNAL OF INORGANIC CHEMISTRY
Volume -, Issue 7, Pages 1389-1395

Publisher

WILEY-V C H VERLAG GMBH
DOI: 10.1002/ejic.200300644

Keywords

hydroxides; layered compounds; ferrocene; host-guest systems; organic-inorganic hybrid composites

Ask authors/readers for more resources

Zn-Al layered double hydroxides (LDHs) intercalated by ferrocenecarboxylate (FcCOO) and 1,1'-ferrocenedicarboxylate [Fc(COO)(2)] anions have been prepared by co-precipitation from aqueous solution. The Zn/Al ratio in the final materials was in the range of 1.8-1.9. Powder X-ray diffraction (XRD) indicates that the material Zn2Al-Fc(COO)(2) contains a monolayer of guest anions resulting in a basal spacing of 15.5 Angstrom. The material Zn2Al-FcCOO exhibits a basal spacing of 20.0 Angstrom, consistent with the formation of a bilayer of organometallic guest species. FTIR, FT Raman and C-13 MAS NMR spectroscopy confirm the presence of structurally intact ferrocenecarboxylate and 1,1'-ferrocenedicarboxylate anions. The nature of the Al centers in the samples was probed by 1- and 2-D (triple- quantum) Al-27 MAS NMR spectroscopy. Thermal properties were studied by thermogravimetric analysis and by measuring powder XRD patterns at increasing temperatures in the range of 25-450 degreesC. Up to 160 degreesC the materials lose interlayer water molecules. Dehydration of Zn2Al-Fc(COO)(2) prompts reorientation of the ferrocene guest anions, resulting in the formation of a collapsed phase with an interlayer separation of 12.3 Angstrom. The structural transformation is fully reversible upon hydration. Heat treatment of Zn2Al-FcCOO only resulted in a gradual contraction of the interlayer separation and not the formation of a collapsed phase. (C) Wiley-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, Germany, 2004.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available