4.6 Article

Ca2+-induced rolling of tropomyosin in muscle thin filaments -: The α- and β-band hypothesis revisited

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 279, Issue 15, Pages 15204-15213

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M308904200

Keywords

-

Ask authors/readers for more resources

Tropomyosin is a filamentous coiled-coil protein directly involved in the regulation of the actomyosin interaction responsible for muscle contraction: it transmits the local calcium-induced conformational change in troponin to the helical array of myosin-binding sites on the surface of the actin filament. McLachlan and Stewart (McLachlan, A. D., and Stewart, M. (1976) J. Mol. Biol. 103, 271-298) proposed that the tropomyosin coiled-coil structure can be divided into 14 alternating 19- to 20-residue alpha- and beta-bands, which could act as alternate 7-fold sets of sites for specific binding to actin in the different conformational states of the regulated thin filament. Here we present the first direct experimental evidence in support of the alpha- and beta-band hypothesis: we analyze the acrylamide quenching of the fluorescence of mutant tropomyosins containing 5-hydroxytryptophan residues at different positions along the coiled-coil structure under a variety of conditions (alone, complexed with actin, and complexed with actin and troponin with or without Ca2+). We show that fluorescent probes placed in the alpha-bands become less solvent-exposed in the absence of calcium, whereas those in the beta-bands become less solvent-exposed in the presence of calcium. A model in which the tropomyosin coiled-coil rolls across the actin surface in response to Ca2+-binding to troponin most easily explains these observations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available