4.6 Article

Mechanisms of the TRIF-induced interferon-stimulated response element and NF-κB activation and apoptosis pathways

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 279, Issue 15, Pages 15652-15661

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M311629200

Keywords

-

Funding

  1. NIAID NIH HHS [AI49992] Funding Source: Medline

Ask authors/readers for more resources

Toll-like receptor-3 is critically involved in host defense against viruses through induction of type I interferons (IFNs). Recent studies suggest that a Toll/interleukin-1 receptor domain-containing adapter protein (TRIF) and two protein kinases (TANK-binding kinase-1 (TBK1) and IbetaB kinase (IKK)-epsilon) are critically involved in Toll-like receptor-3-mediated IFN-beta production through activation of IFN regulatory factor (IRF)-3 and IRF-7. In this study, we demonstrate that TRIF interacts with both IRF-7 and IRF-3. In addition to TBK1 and IKKepsilon, our results indicate that IKKbeta can also phosphorylate IRF-3 and activate the IFN-stimulated response element. TRIF-induced IRF-3 and IRF-7 activation was mediated by TBK1 and its downstream kinases IKKbeta and IKKepsilon. TRIF induced NF-kappaB activation through an IKKbeta- and tumor necrosis factor receptor-associated factor-6-dependent (but not TBK1- and IKKepsilon-dependent) pathway. In addition, TRIF also induced apoptosis through a RIP/FADD/caspase-8-dependent and mitochondrion-independent pathway. Furthermore, our results suggest that the TRIF-induced IFN-stimulated response element and NF-kappaB activation and apoptosis pathways are uncoupled and provide a molecular explanation for the divergent effects induced by the adapter protein TRIF.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available