4.6 Article

Squalestatin cures prion-infected neurons and protects against prion neurotoxicity

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 279, Issue 15, Pages 14983-14990

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M313061200

Keywords

-

Ask authors/readers for more resources

A key feature of prion diseases is the conversion of the normal, cellular prion protein (PrPC) into beta-sheet-rich disease-related isoforms (PrPSc), the deposition of which is thought to lead to neurodegeneration. In the present study, the squalene synthase inhibitor squalestatin reduced the cholesterol content of cells and prevented the accumulation of PrPSc in three prion-infected cell lines (ScN2a, SMB, and ScGT1 cells). ScN2a cells treated with squalestatin were also protected against microglia-mediated killing. Treatment of neurons with squalestatin resulted in a redistribution of PrPC away from Triton X-100 insoluble lipid rafts. These effects of squalestatin were dose-dependent, were evident at nanomolar concentrations, and were partially reversed by cholesterol. In addition, uninfected neurons treated with squalestatin became resistant to the otherwise toxic effect of PrP peptides, a synthetic miniprion (sPrP106) or partially purified prion preparations. The protective effect of squalestatin, which was reversed by the addition of water-soluble cholesterol, correlated with a reduction in prostaglandin E-2 production that is associated with neuronal injury in prion disease. These studies indicate a pivotal role for cholesterol-sensitive processes in controlling PrPSc formation, and in the activation of signaling pathways associated with PrP-induced neuronal death.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available