4.6 Article

Fatigue failure mechanisms of single-walled carbon nanotube ropes embedded in epoxy

Journal

APPLIED PHYSICS LETTERS
Volume 84, Issue 15, Pages 2811-2813

Publisher

AMER INST PHYSICS
DOI: 10.1063/1.1703837

Keywords

-

Ask authors/readers for more resources

In this work, fatigue failure mechanisms of single-walled carbon nanotube (SWCNT) bundles embedded in epoxy matrix under repeated tensile load were studied. Observed damage and failure modes include: (1) splitting of SWCNT bundles, (2) kink formation and subsequent failure in SWCNTs, and (3) fracture of SWCNT bundles. Patterns of crack propagation under tension in SWCNTs were studied by molecular mechanics simulations, where defect-free SWCNTs and SWCNTs with two different modes of Stone-Wales defects were studied. It is demonstrated by the results of molecular mechanics simulation that the observed fracture surfaces of SWCNT can be reproduced reasonably well, suggesting possible fatigue failure mechanisms of SWCNT in the composite. (C) 2004 American Institute of Physics.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available