4.5 Review

The possible role of cytochrome c oxidase in stress-induced apoptosis and degenerative diseases

Journal

BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS
Volume 1655, Issue 1-3, Pages 400-408

Publisher

ELSEVIER
DOI: 10.1016/j.bbabio.2003.06.005

Keywords

mitochondrial membrane potential hyperpolarization; cytochrome c oxidase; apoptosis; 3,5-diiodo-L-thyronine; palmitate; calcium-activated; protein dephosphorylation; cAMP-dependent phosphorylation

Ask authors/readers for more resources

Apoptotic cell death can occur by two different pathways. Type I is initiated by the activation of death receptors (Fas, TNF-receptor-family) on the plasma membrane followed by activation of caspase 8. Type 2 involves changes in mitochondrial integrity initiated by various effectors like Ca2+, reactive oxygen species (ROS), Bax, or ceramide, leading to the release of cytochrome c and activation of caspase 9. The release of cytochrome e is followed by a decrease of the mitochondrial membrane potential DeltaPsi(m). Recent publications have demonstrated, however, that induction of apoptosis by various effectors involves primarily a transient increase of DeltaPsi(m) for unknown reason. Here we propose a new mechanism for the increased DeltaPsi(m) based on experiments on the allosteric ATP-inhibition of cytochrome c oxidase at high matrix ATP/ADP ratios, which was concluded to maintain low levels of DeltaPsi(m) in vivo under relaxed conditions. This regulatory mechanism is based on the potential-dependency of the ATP synthase, which has maximal activity at DeltaPsi(m) = 100-120 mV. The mechanism is turned off either through calcium-activated dephosphorylation of cytochrome c oxidase or by 3,5-diiodo-L-thyronine, palmitate, and probably other so far unknown effectors. Consequently, energy metabolism changes to an excited state. We propose that this change causes an increase in DeltaPsi(m), a condition for the formation of ROS and induction of apoptosis. (C) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available