4.5 Article

Phase retrieval using coherent imaging systems with linear transfer functions

Journal

OPTICS COMMUNICATIONS
Volume 234, Issue 1-6, Pages 87-105

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.optcom.2004.02.015

Keywords

phase contrast imaging; phase retrieval; X-ray imaging

Categories

Ask authors/readers for more resources

We consider the problem of quantitative phase retrieval from images obtained using a coherent shift-invariant linear imaging system whose associated transfer function (i.e., the Fourier transform of the complex point-spread function) is well approximated by a linear function of spatial frequency. This linear approximation to the transfer function is applicable when the spread of spatial frequencies, in a two-dimensional complex wavefield, is sufficiently narrow when compared to the characteristic length of variation of the transfer function for an imaging system taking such a wavefield as input. We give several algorithms for reconstructing both the phase and amplitude of a given two-dimensional coherent wavefield, given as input data one or more images of such a wavefield which may be formed by different states of the imaging system. When an object to be imaged consists of a single material, or of a single material embedded in a substrate of constant thickness, the phase-amplitude reconstruction can be performed using a single image. As a first application of these ideas, we write down an algorithm for using a single diffraction-enhanced image (DEI) to obtain a quantitative reconstruction of the projected thickness of a single-material sample which is embedded within a substrate of approximately constant thickness. This algorithm is used to quantitatively map inclusions in a breast phantom, from a single synchrotron DEI image of the same. In particular, the reconstructed images quantitatively represent the projected thickness in the bulk of the sample, in contrast to raw DEI images which greatly emphasise sharp edges (high spatial frequencies). Lastly, we point out that the methods presented here are also applicable to the quantitative analysis of differential interference contrast (DIC) images, obtained using both visible-light and X-ray microscopy. (C) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available