4.7 Article

High and low gain switches for regulation of cAMP efflux concentration - Distinct roles for particulate GC- and soluble GC-cGMP-PDE3 signaling in rabbit atria

Journal

CIRCULATION RESEARCH
Volume 94, Issue 7, Pages 936-943

Publisher

LIPPINCOTT WILLIAMS & WILKINS
DOI: 10.1161/01.RES.0000123826.70125.4D

Keywords

cGMP; cAMP; guanylyl cyclase; phosphodiesterase 3; atrial natriuretic peptide

Ask authors/readers for more resources

This study tests the hypothesis that particulate (p) guanylyl cyclase (GC) and soluble (s) GC are involved in the distinct roles for the regulation of cGMP-PDE-cAMP signaling and of mechanical and secretory functions in the heart. Experiments were performed in perfused beating rabbit atria. C-type natriuretic peptide (CNP) and SIN-1, an NO donor, or BAY 41-2272 (BAY), a direct activator for sGC, were used to activate pGC and sGC, respectively. CNP and SIN-1 increased cGMP and cAMP efflux in a concentration-dependent manner. Increase in cAMP was a function of cGMP. The changes in cAMP efflux concentration in terms of cGMP were much more prominent in the atria treated with CNP than in the atria treated with SIN-1. Increase in cAMP efflux concentration was blocked by milrinone but not changed by EHNA. BAY increased cGMP but not cAMP in a concentration-dependent manner. CNP and SIN-1 decreased atrial stroke volume and myocytic ANP release. The decreases in terms of cGMP efflux concentration were much more prominent in the atria treated with CNP than in the atria treated with SIN-1 or BAY. Milrinone accentuated GC agonist-induced decreases in atrial stroke volume and ANP release. In the presence of ODQ, SIN-1 or BAY induced effects were not observed. These data suggest that pGC and sGC activations have distinct roles via cGMP-PDE3-cAMP signaling in the cardiac atrium: high and low gain switches, respectively, for the regulation of cAMP levels and contractile and secretory functions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available