4.2 Article

Deforestation effects on soil properties, runoff and erosion in northern Iran

Journal

ARABIAN JOURNAL OF GEOSCIENCES
Volume 7, Issue 5, Pages 1941-1950

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s12517-013-0853-1

Keywords

Land use change; Rainfall simulation, Soil quality; Organic matter

Funding

  1. Sari Agricultural Sciences and Natural Resources University (SANRU), Sari, Iran

Ask authors/readers for more resources

Improper cultivation practices are seriously degrading native forest ecosystems in northern Iran. Hence, the objectives of this study are to compare selected soil properties, runoff amount, erosion and also introducing equations to predict the runoff and soil erosion in three types of land use (forest, garden and cultivated). A simple portable rainfall simulator has been set in 90 random points to create experimental rainfall. Result showed that changes in natural forest led to a significant clay, organic carbon of soil, total N and antecedent soil moisture decrease and sand, pH and bulk density increasing. The rainfall runoff experiments indicate that runoff content of the natural forest soils was 35 % and respectively 38.45 % higher than the garden and cultivated land soils .This result could be related to the higher antecedent soil moisture in natural forest compared with the other land uses. According to the obtained results, garden soil erosion and cultivated land was 1.351 and respectively 1.587 times higher than the forest. The correlation matrix revealed that runoff content was positively correlated with antecedent soil moisture, bulk density and silt, and negatively with soil organic carbon, total N and sand. Also, soil organic carbon, total N, clay and sand showed negative correlation with soil erosion, while there is a positive correlation between erosion and silt, bulk density, pH and antecedent soil moisture. The results of multiple linear regression showed that runoff in forest, garden and cultivated land can be predicted with correlation coefficient of 0.637, 0.547 and 0.624, respectively. The correlation coefficients of 0.798, 0.628 and 0.560 in equations indicate their moderate potential in simulating soil erosion.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available