4.6 Article

Characterization of the effects of oxygen on xanthine oxidase-mediated nitric oxide formation

Journal

JOURNAL OF BIOLOGICAL CHEMISTRY
Volume 279, Issue 17, Pages 16939-16946

Publisher

AMER SOC BIOCHEMISTRY MOLECULAR BIOLOGY INC
DOI: 10.1074/jbc.M314336200

Keywords

-

Funding

  1. NHLBI NIH HHS [HL63744, HL38324, HL65608] Funding Source: Medline

Ask authors/readers for more resources

Under anaerobic conditions, xanthine oxidase (XO)-catalyzed nitrite reduction can be an important source of nitric oxide (NO). However, questions remain regarding whether significant XO-mediated NO generation also occurs under aerobic conditions. Therefore, electron paramagnetic resonance, chemiluminescence NO-analyzer, and NO-electrode studies were performed to characterize the kinetics and magnitude of XO-mediated nitrite reduction as a function of oxygen tension. With substrates xanthine or 2,3-dihydroxy-benz-aldehyde that provide electrons to XO at the molybdenum site, the rate of NO production followed Michaelis-Menten kinetics, and oxygen functioned as a competitive inhibitor of nitrite reduction. However, with flavin-adenine dinucleotide site-binding substrate NADH as electron donor, aerobic NO production was maintained at more than 70% of anaerobic levels, and binding of NADH to the flavin-adenine dinucleotide site seemed to prevent oxygen binding. Therefore, under aerobic conditions, NADH would be the main electron donor for XO-catalyzed NO production in tissues. Studies of the pH dependence of NO formation indicated that lower pH values decrease oxygen reduction but greatly increase nitrite reduction, facilitating NO generation. Isotope tracer studies demonstrated that XO-mediated NO formation occurs in normoxic and hypoxic heart tissue. Thus, XO-mediated NO generation occurs under aerobic conditions and is regulated by oxygen tension, pH, nitrite, and reducing substrate concentrations.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available