4.5 Article

Spontaneous synchronized calcium oscillations in neocortical neurons in the presence of physiological [Mg2+]:: involvement of AMPA/kainate and metabotropic glutamate receptors

Journal

BRAIN RESEARCH
Volume 1006, Issue 1, Pages 8-17

Publisher

ELSEVIER SCIENCE BV
DOI: 10.1016/j.brainres.2004.01.059

Keywords

neocortical neuron; calcium oscillation; magnesium; metabotropic glutamate receptor; AMPA receptor; NMDA receptor

Categories

Ask authors/readers for more resources

Primary cultures of neocortical neurons exhibit spontaneous Ca2+ oscillations under zero or low extracellular [Mg2+] conditions. We find that mature murine neocortical neurons cultured for 9 days also produce spontaneous Ca2+ oscillations in the presence of physiological [Mg2+]. These Ca2+ oscillations were action potential mediated inasmuch as tetrodotoxin eliminated their occurrence. AMPA receptors were found to regulate the frequency of Ca2+ oscillations. In contrast, Ca2+ oscillations were independent of activation of L-type Ca2+ channels, and NMDA receptors provided only a minor contribution. Release of intracellular Ca2+ stores was involved in the oscillatory activity since thapsigargin reduced the amplitude and frequency of the oscillations. S-4-carboxyphenylglycine ((S)-4CPG), an antagonist of group 1 metabotropic glutamate receptor (mGluR), also reduced the amplitude of oscillations. In addition, 1-aminocyclopentane-trans-1,3-dicarboxylic acid (trans-ACPD), a group 1 mGluR agonist, increased the oscillation frequency, suggesting a critical role for mGluR in the generation of Ca2+ oscillations. The mGluR-mediated release of intracellular Ca2+ stores appeared to be mediated by phospholipase C (PLC) since the PLC inhibitor U73122 eliminated the Ca2+ oscillations. These results indicate that Ca2+ oscillations in neocortical cultures in the presence of physiologic [Mg2+] are primarily initiated by excitatory input from AMPA receptors and involve mobilization of intracellular Ca2+ stores following activation of mGluR. (C) 2004 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available