4.2 Article

Effect of temperature, pressure, salinity, and surfactant concentration on IFT for surfactant flooding optimization

Journal

ARABIAN JOURNAL OF GEOSCIENCES
Volume 6, Issue 9, Pages 3535-3544

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s12517-012-0605-7

Keywords

Surfactant flooding; Enhanced oil recovery; Triton X-405; Interfacial tension; Critical micelle concentration

Funding

  1. King Saud University

Ask authors/readers for more resources

In this research, effect of temperature, pressure, salinity, surfactant concentration, and surfactant type on interfacial tension (IFT) and critical micelle concentration of Saudi Arabian crude oil and various aqueous phases were investigated. The temperature ranged from ambient condition to 90 degrees C, and the pressures were varied from atmospheric to 4,000 psi (27.58 MPa). Surfactant solutions were prepared using several aqueous phases, i.e., purified water, 10% brine consisting of 100% NaCl, 10% brine consisting of 95% NaCl and 5% CaCl2, and 10% brine consisting of 83% NaCl and 17% CaCl2. Out of 13 commercial surfactants, only three surfactants showed good solubility in pure water and brine. Those are Zonyl FSE Fluorosurfactant (R), Triton X-100 (R), and Triton X-405 (R). Therefore, they were investigated thoroughly by measuring their efficiency in reducing the crude oil-aqueous phase IFT. Based on this screening process, laboratory surfactant flooding experiments for crude oil recovery were conducted using Triton X-405 and Triton X-100. The chemical flood was made at both original oil in place and at residual oil in place subsequent to conventional water flooding. Based on the obtained results, both surfactants were efficient, and more oil was recovered than that obtained through water flooding. Comparing both surfactant solutions, it was observed that Triton X-405 was more efficient than Triton X-100 at the same surfactant concentration and reservoir conditions.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available