4.6 Article

Noncovalent imprinting in the shell of core-shell nanoparticles

Journal

LANGMUIR
Volume 20, Issue 9, Pages 3775-3779

Publisher

AMER CHEMICAL SOC
DOI: 10.1021/la0356755

Keywords

-

Ask authors/readers for more resources

Propranolol was imprinted using noncovalent interactions in the shell of core-shell nanoparticles prepared by aqueous emulsion polymerization in the presence and absence of toluene. The imprinted particles were characterized, and their capacity to rebind propranolol from both organic and aqueous media was analyzed. Results showed that the amount of template incorporated into the polymer and the presence of toluene as a porogenic agent influenced the ability of the nanoparticles obtained to rebind propranolol. The presence of toluene during imprinting increased rebinding by about 2-fold in buffer and by 3-fold in toluene, compared with similar materials made in the absence of toluene during imprinting. It also influenced the final surface area of the particles. Binding site affinity, assessed by radioligand displacement, was measured as IC50 values of about 1-10 muM. This compares with about 3 muM for bulk polymer made with a similar composition. Finally, to demonstrate the advantages of structured particles for analytical applications a new property, fluorescence, was incorporated into the core of the particles without interfering with the imprinted shell and its ability to rebind propranolol.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available