4.4 Article

Wavelet-based processing of neuronal spike trains prior to discriminant analysis

Journal

JOURNAL OF NEUROSCIENCE METHODS
Volume 134, Issue 2, Pages 159-168

Publisher

ELSEVIER
DOI: 10.1016/j.jneumeth.2003.11.007

Keywords

spike train; neural coding; discriminant analysis; pattern recognition; feature extraction; preprocessing; dimension reduction; wavelets

Ask authors/readers for more resources

Investigations of neural coding in many brain systems have focused on the role of spike rate and timing as two means of encoding information within a spike train. Recently, statistical pattern recognition methods, such as linear discriminant analysis (LDA), have emerged as a standard approach for examining neural codes. These methods work well when data sets are over-determined (i.e., there are more observations than predictor variables). But this is not always the case in many experimental data sets. One way to reduce the number of predictor variables is to preprocess data prior to classification. Here, a wavelet-based method is described for preprocessing spike trains. The method is based on the discriminant pursuit (DP) algorithm of Buckheit and Donoho [Proc. SPIE 2569 (1995) 540-51]. DP extracts a reduced set of features that are well localized in the time and frequency domains and that can be subsequently analyzed with statistical classifiers. DP is illustrated using neuronal spike trains recorded in the motor cortex of an awake, behaving rat [Laubach et al. Nature 405 (2000) 567-71]. In addition, simulated spike trains that differed only in the timing of spikes are used to show that DP outperforms another method for preprocessing spike trains, principal component analysis (PCA). (C) 2003 Elsevier B.V. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.4
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available