4.6 Article

Inhibitory effect of soluble PDGF-β receptor in culture-activated hepatic stellate cells

Journal

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.bbrc.2004.03.064

Keywords

adenovirus; gene transfer; alpha-SMA; collagen type I (alpha I); fibrosis; hepatic stellate cell; myofibroblast; PDGF; PDGFR; sPDGFR beta; soluble receptor; TGF-beta 1

Ask authors/readers for more resources

Following liver injury, hepatic stellate cells undergo phenotypic transformation with acquisition of myofibroblast-like features, characterized by increased cell proliferation, motility, contractility, and extracellular matrix production. Activation of hepatic stellate cells is regulated by several cytokines and growth factors, including platelet-derived growth factor B-chain, a potent mitogen for HSC, overexpressed during hepatic fibrogenesis. This pleiotropic mediator exerts cellular effects by binding to specific receptors, inducing receptor dimerization and tyrosine-autophosphorylation. Activated receptor phosphotyrosines recruit signal transduction molecules, initiating various signaling pathways. We produced a soluble PDGFbeta-receptor (sPDGFRbeta) consisting of an extracellular domain connected to the IgG-Fc part of human immunoglobulin heavy chain. This soluble, chimeric receptor inhibits PDGF signaling and PDGF-induced proliferation in culture-activated hepatic stellate cells. Furthermore, sPDGFR decreased collagen type I (alphaI) mRNA expression and inhibits autocrine-looping in PDGF-BB mRNA production. In summary, sPDGFRbeta clearly shows effective inhibitory properties in early HSC activation, suggesting potential therapeutic impact for anti-PDGF intervention in liver fibrogenesis. (C) 2004 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available