4.8 Article

Cavitation inception on microparticles: A self-propelled particle accelerator

Journal

PHYSICAL REVIEW LETTERS
Volume 92, Issue 17, Pages -

Publisher

AMER PHYSICAL SOC
DOI: 10.1103/PhysRevLett.92.174501

Keywords

-

Ask authors/readers for more resources

Corrugated, hydrophilic particles with diameters between 30 and 150 mum are found to cause cavitation inception at their surfaces when they are exposed to a short, intensive tensile stress wave. The growing cavity accelerates the particle into translatory motion until the tensile stress decreases, and subsequently the particle separates from the cavity. The cavity growth and particle detachment are modeled by considering the momentum of the particle and the displaced liquid. The analysis suggests that all particles which cause cavitation are accelerated into translatory motion, and separate from the cavities they themselves nucleate. Thus, in the research of cavitation nuclei the link is established between developed cavitation bubbles and their origin.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available