4.6 Article

Correlation between electrochemical characteristics and thermal stability of advanced lithium-ion batteries in abuse tests - short-circuit tests

Journal

ELECTROCHIMICA ACTA
Volume 49, Issue 11, Pages 1803-1812

Publisher

PERGAMON-ELSEVIER SCIENCE LTD
DOI: 10.1016/j.electacta.2003.12.012

Keywords

advanced lithium-ion batteries; thermal stability; differential scanning calorimetry; AC impedance; short-circuit test

Ask authors/readers for more resources

The shutdown function of a separator is an important factor in the safety of advanced lithium-ion batteries (ALB). When a separator without proper shutdown function is used, battery safety would depend on the thermal stability of electrode materials. Results show that thermal stability of a battery, contributed from both the anode and cathode, decreases noticeably after cycling. DSC shows that exothermicity from SEI decomposition and the reaction of the lithiated graphite and electrolyte around 140degreesC increases as cycle number increase; main reason is the gradual thickening of passivation film, observed through three-electrode ac impedance measurements. DSC also shows a similar trend of exothermicity for LixCoO2 cathode. The lesser the amount of lithium (x-value) in LixCoO2, the larger the exothermicity and the lower the decomposition temperature. Using a three-electrode system to observe the changes of open-circuit potential in LixCoO2 cathode, thermal instability is a consequence of decreased lithium content as cycle increases. (C) 2003 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.6
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available