4.5 Article Proceedings Paper

Blue silver: A very sensitive colloidal Coomassie G-250 staining for proteome analysis

Journal

ELECTROPHORESIS
Volume 25, Issue 9, Pages 1327-1333

Publisher

WILEY
DOI: 10.1002/elps.200305844

Keywords

colloidal stains; human kidney tubular epithelial cells; porous immobilized pH gradient gels; two-dimensional maps

Ask authors/readers for more resources

A modified Neuhoff's colloidal Coomassie Blue G-250 stain is reported, dubbed blue silver on account of its considerably higher sensitivity, approaching the one of con- ventional silver staining. The main modifications, as compared to Neuhoff's protocol, were: a 20% increment in dye concentration (from 0.1 % up to 0.12%) and a much higher level of phosphoric acid in the recipe (from 2% up to 10%). The blue silver exhibits a much faster dye uptake (80% during the first hour of coloration, vs. none with a commercial preparation from Sigma). Even at equilibrium (24 h staining), the blue silver exhibits a much higher sensitivity than all other recipes, approaching (but lower than) the one of the classical silver stain. Measurements of stain sensitivity after sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of bovine serum albumin (BSA) gave a detection limit (signal-to-noise ratio > 3) of 1 ng in a single zone. The somewhat lower sensitivity of blue silver as compared to classical silvering protocols in the presence of aldehydes is amply compensated for by its full compatibility with mass spectrometry of eluted polypeptide chains, after a two-dimensional map analysis, thus confirming that no dye is covalently bound (or permanently modifies) to any residue in the proteinaceous material. It is believed that the higher level of phosphoric acid in the recipe, thus its lower final pH, helps in protonating the last dissociated residues of Asp and Glu in the polypeptide coils, thus greatly favoring ionic anchoring of dye molecules to the protein moiety. Such a binding, though, must be followed by considerable hydrophobic association with the aromatic and hydrophobic residues along the polypeptide backbone.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.5
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available