4.8 Article

Surface modification of ultra thin poly (ε-caprolactone) films using acrylic acid and collagen

Journal

BIOMATERIALS
Volume 25, Issue 11, Pages 1991-2001

Publisher

ELSEVIER SCI LTD
DOI: 10.1016/j.biomaterials.2003.08.038

Keywords

poly (epsilon-caprolactone); surface modification; human dermal fibroblasts; myoblasts; collagen immobilization

Ask authors/readers for more resources

Poly (e-caprolactone) (PCL) has been used as a bioresorbable polymer in numerous medical devices as well as for tissue engineering applications. Its main advantage is its biocompatibility and slow degradation rate. PCL surface, however, is hydrophobic and cell-biomaterial interaction is not the best. We attempt for the first time to modify an ultra thin PCL surface with collagen. The PCL film was prepared using solvent casting and biaxial stretching technique developed in our laboratory. This biaxial stretching produced an ultra thin PCL 3-7 mum thick, ideal for membrane tissue engineering applications. The PCL film was pretreated using Argon plasma, and then UV polymerized with acrylic acid (AAc). Collagen immobilization was then carried out. The modified film surface was characterized by Fourier Transform Infrared (FT-IR) and X-ray Photoelectron Spectroscopy (XPS). Water contact angles were also measured to evaluate the hydrophilicity of the modified surface. Results showed that the hydrophilicity of the surface has improved significantly after surface modification. The water contact angle dropped from 66degrees to 32degrees. Atomic Force Microscopy (AFM) showed an increase in roughness of the film. A change from 46 to 60 nm in the surface morphology was also observed. The effect of cells attachment on the PCL film was studied. Human dermal fibroblasts and myoblasts attachment and proliferation were improved remarkably on the modified surface. The films showed excellent cell attachment and proliferation rate. (C) 2003 Elsevier Ltd. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available