4.7 Article

BMP10 is essential for maintaining cardiac growth during murine cardiogenesis

Journal

DEVELOPMENT
Volume 131, Issue 9, Pages 2219-2231

Publisher

COMPANY BIOLOGISTS LTD
DOI: 10.1242/dev.01094

Keywords

BMP10; p57(kip2); NKX2.5; MEF2C; cardiac growth; ventricular trabeculation; compaction

Funding

  1. NHLBI NIH HHS [HL63196, R01 HL060714, R01 HL070259-03, HL70259, HL60714, HLOK04071, R01 HL070259] Funding Source: Medline

Ask authors/readers for more resources

During cardiogenesis, perturbation of a key transition at mid-gestation from cardiac patterning to cardiac growth and chamber maturation often leads to diverse types of congenital heart disease, such as ventricular septal defect (VSD), myocardium noncompaction, and ventricular hypertrabeculation. This transition, which occurs at embryonic day (E) 9.0-9.5 in murine embryos and E24-28 in human embryos, is crucial for the developing heart to maintain normal cardiac growth and function in response to an increasing hemodynamic load. Although, ventricular trabeculation and compaction are key morphogenetic events associated with this transition, the molecular and cellular mechanisms are currently unclear. Initially, cardiac restricted cytokine bone morphogenetic protein 10 (BMP10) was identified as being upregulated in hypertrabeculated hearts from mutant embryos deficient in FK506 binding protein 12 (FKBP12). To determine the biological function of BMP10 during cardiac development, we generated BMP10-deficient mice. Here we describe an essential role of BMP10 in regulating cardiac growth and chamber maturation. BMP10 null mice display ectopic and elevated expression of p57(kip2) and a dramatic reduction in proliferative activity in cardiomyocytes at E9.0-E9.5. BMP10 is also required for maintaining normal expression levels of several key cardiogenic factors (e.g. NKX2.5 and NIEF2C) in the developing myocardium at mid-gestation. Furthermore, BMP10-conditioned medium is able to rescue BMP10-deficient hearts in culture. Our data suggest an important pathway that involves a genetic interaction between BNIP10, cell cycle regulatory proteins and several major cardiac transcription factors in orchestrating this transition in cardiogenesis at mid-gestation. This may provide an underlying mechanism for understanding the pathogenesis of both structural and functional congenital heart defects.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available