4.7 Article

Glycogen synthase kinase 3β (GSK3β) mediates 6-hydroxydopamine-induced neuronal death

Journal

FASEB JOURNAL
Volume 18, Issue 7, Pages 1162-+

Publisher

FEDERATION AMER SOC EXP BIOL
DOI: 10.1096/fj.04-1551fje

Keywords

apoptosis; caspases; endoplasmic reticulum stress; neurodegeneration; neurotrophins

Funding

  1. NCI NIH HHS [CA90385] Funding Source: Medline
  2. NIAAA NIH HHS [AA12968] Funding Source: Medline

Ask authors/readers for more resources

The causes of sporadic Parkinson's disease (PD) are poorly understood. 6-Hydroxydopamine (6-OHDA), a PD mimetic, is widely used to model this neurodegenerative disorder in vitro and in vivo; however, the underlying mechanisms remain incompletely elucidated. We demonstrate here that 6-OHDA evoked endoplasmic reticulum ( ER) stress, which was characterized by an up-regulation in the expression of GRP78 and GADD153 (Chop), cleavage of procaspase-12, and phosphorylation of eukaryotic initiation factor-2 alpha in a human dopaminergic neuronal cell line (SH-SY5Y) and cultured rat cerebellar granule neurons (CGNs). Glycogen synthase kinase-3 beta (GSK3beta) responds to ER stress, and its activity is regulated by phosphorylation. 6-OHDA significantly inhibited phosphorylation of GSK3beta at Ser9, whereas it induced hyperphosphorylation of Tyr216 with little effect on GSK3beta expression in SH-SY5Y cells and PC12 cells (a rat dopamine cell line), as well as CGNs. Furthermore, 6-OHDA decreased the expression of cyclin D1, a substrate of GSK3beta, and dephosphorylated Akt, the upstream signaling component of GSK3beta. Protein phosphatase 2A (PP2A), an ER stress-responsive phosphatase, was involved in 6-OHDA-induced GSK3beta dephosphorylation (Ser9). Blocking GSK3beta activity by selective inhibitors ( lithium, TDZD-8, and L803-mts) prevented 6-OHDA-induced cleavage of caspase-3 and poly(ADP-ribose) polymerase (PARP), DNA fragmentations and cell death. With a tetracycline (Tet)-controlled TrkB inducible system, we demonstrated that activation of TrkB in SH-SY5Y cells alleviated 6-OHDA-induced GSK3beta dephosphorylation (Ser9) and ameliorated 6-OHDA neurotoxicity. TrkB activation also protected CGNs against 6-OHDA-induced damage. Although antioxidants also offered neuroprotection, they had little effect on 6-OHDA-induced GSK3beta activation. These results suggest that GSK3beta is a critical intermediate in pro-apoptotic signaling cascades that are associated with neurodegenerative diseases, thus providing a potential target site amenable to pharmacological intervention.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.7
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available