4.2 Article

Prediction and controlling of flyrock in blasting operation using artificial neural network

Journal

ARABIAN JOURNAL OF GEOSCIENCES
Volume 4, Issue 3-4, Pages 421-425

Publisher

SPRINGER HEIDELBERG
DOI: 10.1007/s12517-009-0091-8

Keywords

Blasting; Sangan iron mine; Artificial neural network; Flyrock

Ask authors/readers for more resources

Flyrock is one of the most hazardous events in blasting operation of surface mines. There are several empirical methods to predict flyrock. Low performance of such models is due to complexity of flyrock analysis. Existence of various effective parameters and their unknown relationships are the main reasons for inaccuracy of the empirical models. Presently, application of new approaches such as artificial intelligence is highly recommended. In this paper, an attempt has been made to predict and control flyrock in blasting operation of Sangan iron mine, Iran incorporating rock properties and blast design parameters using artificial neural network (ANN) method. A three-layer feedforward back-propagation neural network having 13 hidden neurons with nine input parameters and one output parameter were trained using 192 experimental blast datasets. It was also observed that in ascending order, blastability index, charge per delay, hole diameter, stemming length, powder factor are the most effective parameters on the flyrock. Reducing charge per delay caused significant reduction in the flyrock from 165 to 25 m in the Sangan iron mine.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available