4.2 Article

Numerical solution of fractional advection-dispersion equation

Journal

JOURNAL OF HYDRAULIC ENGINEERING
Volume 130, Issue 5, Pages 422-431

Publisher

ASCE-AMER SOC CIVIL ENGINEERS
DOI: 10.1061/(ASCE)0733-9429(2004)130:5(422)

Keywords

rivers; advection; wave dispersion; numerical models; stability analysis

Ask authors/readers for more resources

Numerical schemes and stability criteria are developed for solution of the one-dimensional fractional advection-dispersion equation (FRADE) derived by revising Fick's first law. Employing 74 sets of dye test data measured on natural streams, it is found that the fractional order F of the partial differential operator acting on the dispersion term varies around the most frequently occurring value of F = 1.65 in the range of 1.4 to 2.0. Two series expansions are proposed for approximation of the limit definitions of fractional derivatives. On this ground, two three-term finite-difference schemes-1.3 Backward Scheme having the first-order accuracy and F.3 Central Scheme possessing the F-th order accuracy-are presented for fractional order derivatives. The F.3 scheme is found to perform better than does the 1.3 scheme in terms of error and stability analyses and is thus recommended for numerical solution of FRADE. The fractional dispersion model characterized by the FRADE and the F.3 scheme can accurately simulate the long-tailed dispersion processes in natural rivers.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.2
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available