3.8 Article

Apoptosis-based evaluation of chemosensitivity in ovarian cancer patients

Journal

Publisher

ELSEVIER SCIENCE INC
DOI: 10.1016/j.jsgi.2003.11.003

Keywords

carboplatin; paclitaxel; caspase-3; apoptosis; chemotherapy; ovarian cancer

Funding

  1. NCI NIH HHS [R01CA92435-01] Funding Source: Medline
  2. NICHD NIH HHS [R01 HD37137-01A2] Funding Source: Medline

Ask authors/readers for more resources

OBJECTIVE: Induction of apoptosis in target cells is a key mechanism by which chemotherapy induces cell killing. We have established an in vitro system for determining the chemosensitivity of epithelial ovarian cancer cells to carboplatin and paclitaxel (Taxol). Practical assays to predict the likelihood of individual tumor sensitivity are needed to facilitate the choice of adequate treatment. We sought to determine whether epithelial ovarian cancer cells (EOC) collected from the ascites fluid of patients known to be clinically chemosensitive or chemoresistant to carboplatin and paclitaxel would show a similar response to chemotherapeutic drugs after in vitro treatment. METHODS: Thirteen patients with stage III and IV ovarian cancer treated with carboplatin and paclitaxel were studied. Caspase-3 activation was used as a surrogate marker for activation of chemotherapy-induced programmed cell death. We compared the in vitro apoptotic response to the clinical response of the patients from whom the tumor cells were isolated. Clinical sensitivity was defined as no evidence of disease recurrence for 6 months after optimal debulking surgery and completion of chemotherapy. RESULTS: Of seven chemosensitive patients, five cell samples treated in vitro had increased caspase-3 activity in response to both carboplatin and paclitaxel. Five of six chemoresistant cases did not show caspase-3 activity in response to only one or to neither agent. CONCLUSION: Quantifiable markers of apoptosis such as caspase-3 activation have the potential to predict the clinical response to chemotherapy. Application of this assay in clinical laboratories could optimize the potential for efficient treatment and avoid the toxicities of ineffective drugs. Copyright (C) 2004 by the Society for Gynecologic Investigation.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

3.8
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available