4.3 Article

GABAergic synapses in hippocampus exocytose aspartate on to NMDA receptors: quantitative immunogold evidence for co-transmission

Journal

MOLECULAR AND CELLULAR NEUROSCIENCE
Volume 26, Issue 1, Pages 156-165

Publisher

ACADEMIC PRESS INC ELSEVIER SCIENCE
DOI: 10.1016/j.mcn.2004.01.017

Keywords

-

Categories

Ask authors/readers for more resources

We previously found evidence for the exocytosis of aspartate from excitatory nerve terminals in hippocampus [J. Neurosci. 18, (1998) 6059]. Here we show, by immunogold electron microscopy in hippocampal slices that aspartate is co-localized and co-exocytosed with GABA from synaptic vesicles in nerve endings assumed to be inhibitory on dentate granule cells and CA1 pyramidal cells. By immunogold double labeling cytochemistry in perfusion fixed hippocampus, we further find. that GABA-positive terminals forming symmetric synaptic specializations on perikarya of granule and pyramidal cells express NMDA receptors. In addition, NMDA receptors are present at synapses on granule cell bodies that have asymmetric synaptic specializations and contain high levels of GABA. Glutamate levels are low in the described types of GABA-positive nerve terminals, but high in terminals making asymmetric synapses on dendritic spines, whereas aspartate is localized with high levels in all of these types of terminal. We propose that aspartate is exocytotically released not only from glutamatergic terminals, but also from GABAergic terminals to act on NMDA receptors and may have a role in the regulation of synaptic transmission. Under pathological conditions, release of an excitatory transmitter at an inhibitory synapse could contribute to the development of, for example, epilepsy. (C) 2004 Elsevier Inc. All rights reserved.

Authors

I am an author on this paper
Click your name to claim this paper and add it to your profile.

Reviews

Primary Rating

4.3
Not enough ratings

Secondary Ratings

Novelty
-
Significance
-
Scientific rigor
-
Rate this paper

Recommended

No Data Available
No Data Available